

Bootstrap Autocomplete Documentation

Version: 2.3.7

Features

	Fast.

	Easy. No complex configuration. HTML attributes supported.

	Modals supported. No problems in modals.

	Customizable. You can customize every single step in the suggesting workflow.

	Batteries included. It works out of the box for Bootstrap v3 and v4.

	i18n. Use data-* attributes to specify the strings to use in case of errors/noresults.

	Styles. No custom styles. Uses standard Bootstrap’s dropdown.

Getting Started

Bootstrap Autocomplete works as a plugin. Add it to your page

<script src="bootstrap-autocomplete.min.js"></script>

Using CDN (thanks to JSDelivr)

STABLE version 2.3.7

<script src="https://cdn.jsdelivr.net/gh/xcash/bootstrap-autocomplete@v2.3.7/dist/latest/bootstrap-autocomplete.min.js"></script>

Latest version (this is the development branch)

<script src="https://cdn.jsdelivr.net/gh/xcash/bootstrap-autocomplete@master/dist/latest/bootstrap-autocomplete.min.js"></script>

Using NPM

npm install bootstrap-autocomplete

Using YARN

yarn add bootstrap-autocomplete

That’s it! Go on to enhance your text fields! :)

Basic usage

Text Autocomplete

Autocomplete is not enabled by default. You must activate it on the fields you want to enhance.
Of course you can also use a wide selector to enable it on specific classes or tags.

Suppose you have a field as follows

<input class="form-control basicAutoComplete" type="text" autocomplete="off">

Here the class basicAutoComplete is used to identify all the fields on which to activate a basic autocomplete.
Then in Javascript we activate it:

$('.basicAutoComplete').autoComplete({
 resolverSettings: {
 url: 'testdata/test-list.json'
 }
});

In this example we specified the url to use. Autocomplete will automatically make an Ajax GET request to that URL
using an argument named q with the text typed by the user. Rate limits are enforced and minimun field length is 2.

Even simpler you can pass the URL directly in the markup

<input class="form-control basicAutoComplete" type="text"
 data-url="myurl"
 autocomplete="off">

and enhance it just with

$('.basicAutoComplete').autoComplete();

Response Format

We know how to start an autocomplete lookup but what about the results?

The default configuration expects a simple list in JSON format. Like

[
 "Google Cloud Platform",
 "Amazon AWS",
 "Docker",
 "Digital Ocean"
]

Select Autocomplete

One of the main features of Bootstrap Autocomplete is to enhance <select> fields as easy as <input> text fields.
Selects are useful to restrict choices to a set of possibilities.

Enhancing a select is no different than text fields.

<select class="form-control basicAutoSelect" name="simple_select"
 placeholder="type to search..."
 data-url="testdata/test-select-simple.json" autocomplete="off"></select>

$('.basicAutoSelect').autoComplete();

Nice! :)

Response Format for Select

In this case we need two values in the response: an id and a text.

[
 { "value": 1, "text": "Google Cloud Platform" },
 { "value": 2, "text": "Amazon AWS" },
 { "value": 3, "text": "Docker" },
 { "value": 4, "text": "Digital Ocean" }
]

Events

Bootstrap Autocomplete triggers usual events.

change - Value changed

And custom.

autocomplete.select - (evt, item) The element item is the item selected by the user and currently selected in the field or null/undefined if cleared.

autocomplete.freevalue - (evt, value) The text field contains value as the custom value (i.e. not selected from the choices dropdown).

autocomplete.dd.shown - (evt) V4 only. Fired when the autocomplete dropdown is shown.

autocomplete.dd.hidden - (evt) V4 only. Fired when the autocomplete dropdown is hidden.

Reference

Activating Autocomplete

	
$(...).autoComplete([options])

	Enhance the form fields identified by the selector

	Arguments:

	
	options – Configuration options of type ConfigOptions.

Configuration options

	
formatResult

	
	
callback(item)

	
	Arguments:

	
	item (object) – The item selected or rendered in the dropdown.

	Returns:

	An object { id: myItemId, text: myfancyText, html?: myfancierHtml }.

	
minLength

	Default: 3. Minimum character length to start lookup.

	
autoSelect

	Default: true. Automatically selects selected item on blur event (i.e. using TAB to switch to next field).

	
resolver

	Default: ajax. Resolver type. custom to implement your resolver using events.

	
noResultsText

	Default: No results. Text to show when no results found. Use '' to disable.

	
bootstrapVersion

	Default: auto. Specify Bootstrap Version. Default is autodetect.
Values: auto, 4, 3

	
preventEnter

	Default: false. Prevent default Enter behavior. Setting this to true is useful to prevent form submit.

	
resolverSettings

	Object to specify parameters used by default resolver.

	
url

	Url used by default resolver to perform lookup query.

	
queryKey

	Default: q Default query key.

	
requestThrottling

	Default: 500. Time to wait in ms before starting a remote request.

	
fail

	Default: undefined. Callback in case of AJAX error.

	
events

	Object to specify custom event callbacks.

	
search

	
	
func(qry, callback, origJQElement)

	Function called to perform a lookup.

	Arguments:

	
	qry (string) – Query string.

	callback – Callback function to process results.
Called passing the list of results callback(results).

	origJQElement (JQuery) – Original jQuery element.

	
searchPost

	
	
func(resultsFromServer, origJQElement)

	Function called to manipulate server response.
Bootstrap Autocomplete needs a list of items. Use this function to convert any server response in
a list of items without reimplementing the default AJAX server lookup.

	Arguments:

	
	resultsFromServer – Result received from server. Using the default resolver this is an object.

	origJQElement (JQuery) – Original jQuery element.

	Returns:

	List of items.

Following events are available to fine tune every lookup aspect. Rarely used in common scenarios

	
typed

	
	
func(newValue, origJQElement)

	Field value changed. Use this function to change the searched value (like prefixing it with some string,
filter some characters, …). Or to stop lookup for certain values.

	Arguments:

	
	newValue (string) – New value.

	origJQElement (JQuery) – Original jQuery element.

	Returns:

	(Un)modified value or false to stop the execution.

	
searchPre

	
	
func(newValue, origJQElement)

	Before starting the search. Like in the typed event, this function can change the search value. The difference is
this event is called after minLength checks.

	Arguments:

	
	newValue (string) – New value.

	origJQElement (JQuery) – Original jQuery element.

	Returns:

	(Un)modified value or false to stop the execution.

As a reference the lookup workflow calls events in the following order:

typed -> searchPre -> search -> searchPost

Advanced usage

Set custom resolver

Default resolver often is not enough. You can customize it as follows.

$('.advancedAutoComplete').autoComplete({
 resolver: 'custom',
 events: {
 search: function (qry, callback) {
 // let's do a custom ajax call
 $.ajax(
 '<url>',
 {
 data: { 'qry': qry}
 }
).done(function (res) {
 callback(res.results)
 });
 }
 }
});

Request throttling is not working with custom resolvers. You should implement your logic.

Set custom value

To set an initial or change the value of the field.

$('.myAutoSelect').autoComplete('set', { value: myValue, text: myText });

Clear value

To clear the value.

$('.myAutoSelect').autoComplete('set', null);
// or
$('.myAutoSelect').autoComplete('clear');

Show autocomplete

Sometimes is useful to programmatically show suggestions.
To achieve this set a minLength of 0, server side acts accordingly with a qry value of '', call the following method:

$('.myAutoSelect').autoComplete('show');

Customize results using default AJAX resolver

Using the searchPost event you can manipulate the result set making it compatible with autocomplete default.
This is useful to bypass the customization of the entire search AJAX call.

$('.myAutoSelect').autoComplete({
 events: {
 searchPost: function (resultFromServer) {
 return resultFromServer.results;
 }
 }
});

Demo and Examples

You can view Demo and Examples here [https://raw.githack.com/xcash/bootstrap-autocomplete/master/dist/latest/index.html].

Translating messages

To customize “no results” message use the following markup.

<select class="form-control emptyAutoSelect" name="empty_select"
 data-url="testdata/test-empty.json"
 data-noresults-text="Nothing to see here."
 autocomplete="off"></select>

Issues, Support and New Features requests

Feel free to post a new issue [https://github.com/xcash/bootstrap-autocomplete/issues]

Development Environment

To setup an environment to develop Bootstrap-Autocomplete you need only Docker and Docker Compose.

The source is in the TypeScript language in the src directory while the documentation is
generated using Sphinx and resides in the docs directory.

Create the development containers:

docker-compose build –pull

Install dependencies (first time and to update):

docker-compose run –rm tools yarn install

To start the environment:

$ docker-compose up

Two servers starts up:

	Demo page [http://localhost:9000]

	Documentation [http://localhost:9999]

Index

 Symbols
 | A
 | B
 | C
 | E
 | F
 | M
 | N
 | P
 | Q
 | R
 | S
 | T
 | U

Symbols

 	
 	$() (built-in function)

A

 	
 	autoSelect (None attribute)

B

 	
 	bootstrapVersion (None attribute)

C

 	
 	callback() (built-in function)

E

 	
 	events (None attribute)

F

 	
 	fail (None attribute)

 	
 	formatResult (None attribute)

 	func() (built-in function), [1], [2], [3]

M

 	
 	minLength (None attribute)

N

 	
 	noResultsText (None attribute)

P

 	
 	preventEnter (None attribute)

Q

 	
 	queryKey (None attribute)

R

 	
 	requestThrottling (None attribute)

 	
 	resolver (None attribute)

 	resolverSettings (None attribute)

S

 	
 	search (None attribute)

 	
 	searchPost (None attribute)

 	searchPre (None attribute)

T

 	
 	typed (None attribute)

U

 	
 	url (None attribute)

 nav.xhtml

 Table of Contents

 		
 Bootstrap Autocomplete Documentation

_static/plus.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

